Solving an Integral
Question
If $\displaystyle{g(x)=\int_0^1 \frac{e^{-x^2(t^2+1)}}{t^2+1}\,dt}$, find $g'(x)$. Any hint?
Answer
Let assume:
$\int f(x, t)dt = F(x, t) + c_0$
$$g(x)=\int_{\phi(x)}^{\psi(x)}{f(x, t)}dt =\left|F(x, t)\right|_{t = \phi(x)}^{t = \psi(x)} = F(x, \psi(x)) - F(x, \phi(x))$$
\begin{align*}
g'(x) &= \left[\frac {\partial}{\partial x}F(x, \psi(x)) + \frac {\partial}{\partial \psi(x)}F(x, \psi(x)) \cdot {\color{red}{\psi'(x)}}\right] - \left[\frac {\partial}{\partial x}F(x, \phi(x)) + \frac {\partial}{\partial \phi(x)}F(x, \phi(x)) \cdot {\color{red}{\phi'(x)}}\right] \\
&= \left[\frac {\partial}{\partial x}F(x, \psi(x)) - \frac {\partial}{\partial x}F(x, \phi(x))\right]
\end{align*}
$$\begin{align*}\color{green}g'(x)
= \int_{\phi}^{\psi} \frac {\partial}{\partial x}f(x, t)dt
{g'(x)}
& = \int_0^1 {\frac{\partial}{\partial x}\frac{e^{-x^2(t^2+1)}}{t^2+1}}dt\\
& = -2x\int_0^1 {\frac{e^{-x^2(t^2+1)}}{t^2+1}}dt\\
& = -2x\int_0^1e^{-x^2t^2}.e^{{-x^2}}dt\\
& = -2xe^{{-x^2}}\int_0^1e^{-x^2t^2}dt\\
& = -2xe^{-x^2}\times \frac {\sqrt\pi}{2} \times \frac{\text{erf}(x)}{x}\\
& = \color{green}{-\sqrt\pi e^{-x^2} \text{erf}(x) = -e^{-x^2}\gamma(\frac 1{2}, x^2)}
\end{align*}$$