Question
$$\frac {\zeta(2)}{e^2} + \frac {\zeta(3)}{e^3} + \frac {\zeta(4)}{e^4} + \frac {\zeta(5)}{e^5}.....?$$
I tried to solve it by using this product formula,
$$\frac 1{\Gamma (x)}=xe^{\gamma x} \prod_{n=1}^{\infty} \left(1+\frac x{n}\right)e^{-\frac x{n}}$$
I tried by differentiating after taking $\log$
I'm interested in finding the answer for the above summation $\frac {\zeta(2)}{e^2} + \frac {\zeta(3)}{e^3} + \frac {\zeta(4)}{e^4} + \frac {\zeta(5)}{e^5}.....$
Answer
You can follow the same method and use Maclaurin's Series for $\log$. eventually, you'll end up to Taylor's Series form of
Digamma function
$$
S = \sum_{n = 2}^{\infty} \frac{\zeta(n)}{e^n}
$$
Let us consider the Taylor Series form of Digamma function:
$$
\begin{aligned}
\psi_0(z)
&= -\gamma + \sum_{n = 1}^{\infty} (-1)^{n+1} \zeta(n+1)(z-1)^{n} \\
&= -\gamma + \sum_{n = 2}^{\infty} (-1)^{n} \zeta(n)(z-1)^{n-1} \\
&\text{Let us multiply by } (z-1) \text{ where } (z-1) = -e^{-1}, \\
&\implies -(z-1)\gamma + \sum_{n=2}^{\infty} (-1)^{n} \zeta(n)(z-1)^{n} = (z-1)\times \psi_0(z), \\
&\implies \sum_{n=2}^{\infty} (-1)^{n} \zeta(n)(-e^{-n}) = \color{blue}{\sum_{n = 2}^{\infty} \frac{\zeta(n)}{e^n}} \\
&= \color{blue}{-e^{-1}(\psi_0(1-e^{-1}) + \gamma)}.
\end{aligned}
$$