$$ \text{Proving} \left(1-\frac13+\frac15-\frac17+\cdots\right)^2=\frac38\left(\frac1{1^2}+\frac1{2^2}+\frac1{3^2}+\frac1{4^2}+\cdots\right) $$

Proving:

Question

The equality$$\left(1-\frac13+\frac15-\frac17+\cdots\right)^2=\frac38\left(\frac1{1^2}+\frac1{2^2}+\frac1{3^2}+\frac1{4^2}+\cdots\right)\tag{1}$$follows from the fact that the sum of the first series is $\dfrac\pi4$, whereas the sum of the second one is $\dfrac{\pi^2}6$. My question is: can someone provide a proof that $(1)$ holds without using this?

Answer

By Jose Carlos Santos

Here is a proof of the identity

$$ \left(\sum_{n \geq 0} \frac{(-1)^n}{(2n+1)}\right)^2 = \frac{3}{8} \sum_{n \in \mathbb{N}} \frac{1}{n^2} $$

without knowing the value of either series.

Consider the double integral

$$ I = \int_{0}^{1} \int_{0}^{1} \frac{1}{(1+x^2)(1+y^2)} \ dy \ dx. $$

On one hand, we observe

$$ \frac{1}{(1+x^2)(1+y^2)} = \sum_{n \geq 0} \left(-x^2 \right)^n \sum_{m \geq 0} \left(-y^2 \right)^m, \quad |x|,|y| < 1. $$

Then, we get that

$$ \begin{align*} I &= \int_{0}^1 \int_{0}^1 \sum_{n \geq 0} \left(-x^2 \right)^n \sum_{m \geq 0} \left(-y^2 \right)^m \ dy \ dx \\ &=\sum_{n \geq 0}\sum_{m \geq 0} \int_{0}^1 \int_{0}^1 \left(-x^2 \right)^n \left(-y^2 \right)^m \ dy \ dx \\ &=\sum_{n \geq 0}\sum_{m \geq 0} \frac{(-1)^n}{2n+1} \frac{(-1)^m}{2m+1} \\ &=\left(\sum_{n \geq 0} \frac{(-1)^n}{2n+1} \right)^2. \end{align*} $$

The interchanging of sum and integral done here can be justified by the Dominated Convergence Theorem.

Now, we make the substitution $ x \mapsto 1/x,$ and $ y \mapsto 1/y $ to $ I, $ resulting in

$$ I = \int_{1}^{\infty}\int_{1}^{\infty} \frac{1}{(1+x^2)(1+y^2)} \ dy \ dx, $$

This implies

$$ I = \frac{1}{4}\int_{0}^{\infty}\int_{0}^{\infty} \frac{1}{(1+x^2)(1+y^2)} \ dy \ dx. $$

Make another substitution $ y=tx $ with $ dy = x \ dt $ to see

$$ \begin{align*} I &= \frac{1}{4}\int_{0}^{\infty}\int_{0}^{\infty} \frac{x}{(1+x^2)(1+t^2x^2)} \ dt \ dx \\ &=\frac{1}{4}\int_{0}^{\infty}\int_{0}^{\infty} \frac{x}{(1+x^2)(1+t^2x^2)} \ dx \ dt, \end{align*} $$

in which the interchanging of the integral is justified by Tonelli's Theorem. Now, using the partial fractions identity,

$$ \frac{x}{(1+x^2)(1+t^2x^2)} = \frac{2 x}{\left(2-2 t^2\right) \left(x^2+1\right)}-\frac{2 t^2 x}{\left(2-2 t^2\right) \left(t^2 x^2+1\right)}, $$

and integrating with respect to $ x, $ we get

$$ I = \frac{1}{4}\int_{0}^{\infty} \frac{\log(t)}{t^2-1} \ dt. $$

Now, observe

$$ \int_{0}^{1} \frac{\log(t)}{t^2-1} \ dt + \int_{1}^{\infty} \frac{\log(t)}{t^2-1} \ dt= \int_{0}^{\infty} \frac{\log(t)}{t^2-1} \ dt. $$

We see that

$$ \int_{0}^{1} \frac{\log(t)}{t^2-1} \ dt = \int_{1}^{\infty} \frac{\log(t)}{t^2-1} \ dt $$

by making a change of variables $ t \mapsto 1/t $ on the second integral. Thus,

$$ I = \frac{1}{2} \int_{0}^{1} \frac{\log(t)}{t^2-1} \ dt. $$

Now, convert the integrand into a geometric series

$$ \frac{\log(t)}{t^2-1} = - \sum_{n \geq 0} \log(t) t^{2n}, \quad t \in (0,1), $$

and we see that

$$ \begin{align*} I &= -\frac{1}{2} \int_{0}^{1} \sum_{n \geq 0} \log(t) t^{2n} \ dt \\ &= -\frac{1}{2} \sum_{n \geq 0} \int_{0}^{1} \log(t) t^{2n} \ dt \\ &= \frac{1}{2} \sum_{n \geq 0} \frac{1}{(2n+1)^2}, \end{align*} $$

in which the interchanging of sum and integral is justified by Beppo Levi's Monotone Convergence Theorem. Observing that

$$ \begin{align*} \sum_{n \in \mathbb{N}} \frac{1}{n^2} &= \sum_{n \in \mathbb{N}} \frac{1}{(2n)^2}+\sum_{n \geq 0} \frac{1}{(2n+1)^2} \\ &= \frac{1}{4}\sum_{n \in \mathbb{N}} \frac{1}{n^2}+\sum_{n \geq 0} \frac{1}{(2n+1)^2}, \end{align*} $$

we find

$$ I = \frac{3}{8} \sum_{n \in \mathbb{N}} \frac{1}{n^2}. $$

Hence, we have

$$ \left(\sum_{n \geq 0} \frac{(-1)^n}{(2n+1)}\right)^2 = \frac{3}{8} \sum_{n \in \mathbb{N}} \frac{1}{n^2}. $$

Remark

For those that may be interested, these types of integral calculations to evaluate series may be found in my joint paper with Daniele Ritelli. See https://www.ams.org/journals/qam/2018-76-03/S0033-569X-2018-01499-3/